

Pressure-Based Inversion and Data Assimilation System for CO₂ Leakage Detection Project # DE-FE0012231

Alex Sun, Ph.D., PE Bureau of Economic Geology University of Texas at Austin

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Transforming Technology through Integration and Collaboration August 16-18, 2016

Acknowledgements

- DOE/NETL: Brian Dressel
- University of Texas
 - Bureau of Economic Geology: Jiemin Lu, Sue Hovorka, Akand Islam
 - Center for Subsurface Modeling: Mary Wheeler, Baehyun Min
- LBNL: Barry Freifeld, Paul Cook
- Sandia Technologies LLC: Kirk Delaune

Outline

- Benefit to the Program
- Project Overview
- Technical Status
- Accomplishments to Date
- Summary

Benefit to the Program

- Carbon program goal being addressed: *Develop* and validate technologies to ensure 99 percent storage permanence
- Project benefits
 - The PIDAS project develops and demonstrates a pressure-based, pulse testing technology for leakage detection in carbon storage reservoirs.
 - Methodologies for enhancing signal-to-noise ratio for injection zone

Project Overview: Goals and Objectives

- Demonstrate the utility of pulse testing for leakage detection
- Develop relevant data analyses and inversion methodologies
- Provide an experimental design tool for CCS operators to apply the technology

Technical Status

- Task 2: Theoretical and numerical proof of concept studies
- Task 3: Laboratory experiments
- Task 4: Development of inversion and data assimilation algorithms
- Task 5: Field demonstration
- Task 6: Synthesis of results

Why Pulse Testing?

- Has been used for reservoir characterization since 1960s
- Hypothesis: pulse testing as a leakage detection technology for CCS
- Expected advantages over other pressure-based methods
 - <u>An active monitoring method</u>: enhanced signal-to-noise ratio, thus mitigating reservoir noise interference
 - <u>No net injection rate change</u>: little interruptions to nominal reservoir operations

Pulse Testing: A Renaissance?

Literature	Field	Use
 Johnson et al. (1966). Pulse-testing: A new method for describing reservoir flow properties between wells. J. Pet. Technol., 18. Fokker, P. A., and F. Verga (2011). Application of harmonic pulse testing to water–oil displacement, J. Pet. Sci. Eng., 79(3), 125–134. 	Reservoir	Site characterization
 Rasmussen et al., (2003). Estimating aquifer hydraulic properties using sinusoidal pumping at the Savannah River site, South Carolina, USA, Hydrogeol. J., 11, pp. 466–482. Cardiff et al, (2013). Aquifer heterogeneity characterization with oscillatory pumping: Sensitivity analysis and imaging potential. WRR. Guiltinan, E., & Becker, M. W. (2015). Measuring well hydraulic connectivity in fractured bedrock using periodic slug tests. Journal of Hydrology, 521, 100-107. 	Aquifer	Site characterization
 Ferrante, M., and B. Brunone (2003). Pipe system diagnosis and leak detection by unsteady-state tests: 1. Harmonic analysis, Adv. Water Resour., 26(1), 95–105. 	Water Industry	Water Leak

Proof of Concept [Task 2]

Amplitude response

 Ω = Resistance of leaky well to vertical flow ¹⁰

$$\begin{array}{ll} \text{Boundary Conditions:} & \begin{array}{l} \frac{1}{2} \frac{2}{p} + \frac{1}{r} \frac{\P}{\P} \frac{p}{r} = \frac{f m_{t,1}}{k_1} \frac{\P p}{\P t} \\ \text{Boundary Conditions:} & \begin{array}{l} \frac{2pk_1b_1}{m} r \frac{\P p}{\P r} = -Q(t) & \begin{array}{l} \lim_{r \otimes \mp} p(r,t) = p_{init} \\ \end{array} \\ p_{D} = \frac{\frac{-K_0(\sqrt{iw_D})}{r_{D,w}\sqrt{iw_D}K_1(r_{D,w}\sqrt{iw_D})}} \\ \frac{W_{J} + \frac{K_0(r_{D,a}\sqrt{iw_D})}{r_{D,w}\sqrt{iw_D}K_1(r_{D,a}\sqrt{aiw_D})} + \frac{K_0(r_{D,a}\sqrt{aiw_D})}{br_{D,a}\sqrt{aiw_D}K_1(r_{D,a}\sqrt{aiw_D})} \end{array} \\ \end{array}$$

Transmissivity ratio: Diffusivity ratio:

$$b = k_2 b_2 / k_1 b_1$$

$$a = h_1 / h_2 \qquad h = k / f m_t \qquad w_D = \frac{w_T^2}{h_1} \qquad 11$$

Multiphase Flow Problem

Amplitude response as a function of upper layer permeability 12

Sun et al., WRR, 2015

Laboratory Experiments [Task 3]

1-m diameter, 0.75 m tall

Clay as 'caprock'

A Mini 3-Layer Repository

Aluminum plate as 'caprock'

Amplitude shifts due to leak

 $\hat{H}(W) = \hat{P}_{obs}(W)$

Field Experiments [Task 5]

Detailed Area of Study @ Cranfield, MS, January 19-31,2015 Cranfield, MS, Lon:-91.141°, Lat: 31.564°

DAS Site

- Lower Tuscaloosa formation
 - Depth 3176 m (10420 ft)
 - Thickness14-24 m (46-80 ft)
- Heterogeneous fluvial strata
 - Permeability: 10⁻³ to ³²⁰⁰
 10⁴ mD
 - Porosity: 5-35%

Lu et al, 2012

Т

Reservoir temperature ~ 128.8 C Gauge res: 0.01psi

Leak Experiments

Data Only Diagnosis

Amplitude vs. Frequency

Each experiment yields one data point on the plot₂₄

Model-Based Analysis

- Can Cranfield sitescale model reproduce the DAS pulse testing experiments?
 - Updated the existing model by including more wells
 - History matching
 - Refined mesh around DAS

UT IPARS (Integrated Parallel Accurate Reservoir Simulator) Simulation

By Baehyun Min

Day 1 (Jan 19, 2015): BHP@F2: 90-min. experiment without leakage

Simulated

Day 1 (Jan 19, 2015): BHP@F2: 90-min. experiment without leakage

Observed

Time

150-min. experiment

Observed

□ Simulated

Leak Location: Global Search

Conclusions

- Leaks will modify the system frequency response function and can be detected if an appropriate pulsing period is used
- Longer HPT pulsing periods increase coverage area
- Lower reservoir permeability or, equivalently, higher upper aquifer permeability, favors detection of leakage, if all other parameters are fixed
- The amplitude and phase of frequency response function provide independent information regarding the current system status and can be combined to locate leaky well locations

Accomplishments to Date

- Task 2: Theoretical and numerical analyses
 - Year 1: Established theoretical basis and validated the concept of pulse-testing-based leakage detection numerically
- Task 5: Field experiments
 - Year 2: Demonstrated viability of the pulse testing leakage detection technique in the field
- Task 3: Laboratory experiments
 - Year 2&3: Performed additional validation tests
- Task 4: Data assimilation algorithms
 - Year 2&3: Developing and testing algorithms

Future Work

Complete laboratory experiments

 Complete remaining modeling and data analyses

Provide a toolbox for designing pulse testing experiments

Synergy Opportunities

- The project developed a cost-effective, pressure-based leakage detection technique that can be incorporated into commercial CCS monitoring plans
- Collaboration with Center for Subsurface Modeling at UT

Appendix

Organization Chart

Bureau of Economic Geology, UT Austin Gulf Coast Carbon Center

Gantt Chart

 Table 2. Project Gantt chart

(Numbers in table rows indicate milestones). (Phase I ; Phase II)

Task	Description	Year 1			Year 2				Year 3				
		1	2	3	4	1	2	3	4	1	2	3	4
1	Update project management plan												
2	Modeling of harmonic pulse tests		1										
3	Lab experiment							_					
3.1	Experiment design and assembling				2								
3.2	Single-phase experiment												
3.3	Multiphase experiment								5				
4	Algorithm development												
4.1	Inversion technique												
4.2	Data assimilation										6		
5	Field demonstration												
5.1	Field site selection												
5.2	Site access & NEPA determination												
5.3	Field experiments						3	4					
6	Synthesis of results												
6.1	Tool user interface development												
6.2	Technology transfer												

Bibliography

- Sun, A. Y., Kianinejad, A., Lu, J., and Hovorka, S. D., 2014, A frequencydomain diagnosis tool for early leakage detection at geologic carbon sequestration sites. Energy Procedia, 63, 4051-4061.
- Sun, A.Y., Lu, J., and Hovorka, S.D., 2015, A harmonic pulse testing method for leakage detection in deep subsurface storage formations. Water Resources Research, 51(6), 4263-4281.
- Sun, A.Y., Lu, J., Freifeld, B.M., Hovorka, S.D., and A. Islam, Using pulse testing for leakage detection in carbon storage reservoirs: A field demonstration, International Journal of Greenhouse Gases Control. 2016.